

HOW TO VIEW THE ONLINE ABSTRACT BOOK

44th annual meeting organizing committee

The online abstract book is only available for viewing for meeting participants and JSDB members.

Access the Meeting website
(<http://www.jsdb.jp/kaisai/jsdb2011/index-e.php>)

Click on “Program” from the menu bar on the left side of the page.

Scroll through the program page and click on a program title of interest.

Plenary Lectures

May 20 (Fri) 9:00-11:30 Room A

Plenary Lectures
Chairpersons: Tesuya Tabata (Univ. of Tokyo), Shigenobu Nakagawa (RIKEN)

PL-01: Hedgehog Signaling in Development and Disease
09:00-10:15 Matthew Scott (Stanford University School of Medicine)

PL-02: The development of the mouse and zebrafish retinas
10:15-11:30 William Harris (University of Cambridge)

Symposia

DATE: May 19 (Thu) 9:00~11:30 Room A

Symposium1: Neural Development: from circuits to behavior

Title click !

▲ Go to top

A popup screen will appear, asking for your ID and password. Enter the ID that was sent to you when you registered (en00xxxx or kn00xxxx) along with your password, and then you will be able to view the abstract. For JSDB members, you can view the abstract by entering your membership ID (081-XXXXXXX) and password.

44th Annual Meeting of JSDB

Please use the user ID and password that were e-mailed to you to confirm your registration.
(either as a presenter or as an observer)

User ID: (Example: knXXXXXX or enXXXXXX)
Password:

If you would like to view other abstracts, return to the program page and click on other program titles of interest.

[PL-01]

Hedgehog Signaling in Development and Disease

*Matthew Scott
(Stanford University School of Medicine)

The development of numerous tissues and organs depends on Hedgehog (Hh) protein signals that influence gene expression in target cells. Defective Hh signaling leads to birth defects and cancer. We are investigating Hh signal transduction and gene regulatory mechanisms in the context of cultured fibroblasts and cerebellum development. The Hh signal transduction mechanism is a complex of the Hh protein, a transmembrane receptor, and a G-protein coupled receptor. Reception of the Hh signal has many unique features. For example, the Hh protein is secreted from primary cilia as a Hh signal transduction organelle. Primary cilia, which are microtubule-based structures, are found on most cells, have been implicated in sensory signaling, and are required for normal development. We find that the Hh signal is received by the G-protein coupled receptor Smo in the cilium, where it prevents accumulation of the protein Patched (Ptc). Inhibition of Hh to Ptc causes departure of both from the cilium, allowing the Hh signal to control target gene expression. Using tagged proteins, and mutants that affect signaling, we are exploring the mechanisms of protein trafficking and target gene activation. We are characterizing direct Hh target genes in responsive cerebellum granule neuron precursors and in the medulloblastoma tumors that arise from the precursors when Ptc function is reduced.

Signaling in development

Page Copyright (C) Japanese Society of Developmental Biologists All Rights Reserved.

If you logout, you will need to reenter your ID and password to view the abstracts.